A PDE Approach to Numerical Fractional Diffusion

Enrique Otárola

Department of Mathematics University of Maryland, College Park, USA and Department of Mathematical Sciences

Department of Mathematical Sciences George Mason University, Fairfax, USA

ACMD Seminar Series, NIST, Mary 2015

$$(-\Delta)^s$$
 $s \in (0,1)$

$$(-\Delta)^s$$
 $s \in (0,1)$

Outline

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

An optimal control problem

Conclusions and future work

Local jump random walk

- ▶ We consider a random walk of a particle along the real line.
- ▶ $h\mathbb{Z} := \{hz : z \in \mathbb{Z}\}$ possible states of the jumping particle.
- ▶ u(x,t) probability of the particle to be at $x \in \mathbf{h}\mathbb{Z}$ at time $t \in \tau\mathbb{N}$.
- ▶ Local jump random walk: at each time step of size τ , the particle jumps to the left or right with probability 1/2.

If we consider $\tau = 2h^2$, then we obtain

$$\frac{u(x,t+\tau) - u(x,t)}{\tau} = \frac{u(x+h,t) + u(x-h,t) - 2u(x,t)}{h^2}$$

Letting $h, \tau \downarrow 0$, we have

Local jump random walk

- ▶ We consider a random walk of a particle along the real line.
- ▶ $h\mathbb{Z} := \{hz : z \in \mathbb{Z}\}$ possible states of the jumping particle.
- ▶ u(x,t) probability of the particle to be at $x \in \mathbf{h}\mathbb{Z}$ at time $t \in \tau \mathbb{N}$.
- ▶ Local jump random walk: at each time step of size τ , the particle jumps to the left or right with probability 1/2.

$$u(x, t + \tau) = \frac{1}{2}u(x + h, t) + \frac{1}{2}u(x - h, t)$$

If we consider $\tau = 2h^2$, then we obtain

$$\frac{u(x, t + \tau) - u(x, t)}{\tau} = \frac{u(x + h, t) + u(x - h, t) - 2u(x, t)}{h^2}$$

Letting $h, \tau \downarrow 0$, we have

Long jump random walk

► The probability that the particle jumps from the point $hk \in \mathbf{h}\mathbb{Z}$ to the point $hl \in \mathbf{h}\mathbb{Z}$ is $\mathcal{K}(k-l) = \mathcal{K}(l-k)$.

$$u(x, t + \tau) = \sum_{k \in \mathbb{Z}} \mathcal{K}(k)u(x + hk, t),$$

which, together with $\sum_{k\in\mathbb{Z}}\mathcal{K}(k)=1$ yield

$$u(x,t+\tau)-u(x,t)=\sum_{k\in\mathbb{Z}}\mathcal{K}(k)\left(u(x+hk,t)-u(x,t)\right)$$

- ▶ Let $K(y) = |y|^{-(n+2s)}$ with $s \in (0,1)$.
- Choose $au = h^{2s}$, then $\frac{\mathcal{K}(k)}{ au} = h^n \mathcal{K}(kh)$

Letting $h, \tau \downarrow 0$.

$$\partial_t u = \int_{\mathbb{R}} \frac{u(x+y,t) - u(x,t)}{|y|^{n+2s}} dy \iff \partial_t u = -(-\Delta)^s u$$

Long jump random walk

▶ The probability that the particle jumps from the point $hk \in \mathbf{h}\mathbb{Z}$ to the point $hl \in \mathbf{h}\mathbb{Z}$ is $\mathcal{K}(k-l) = \mathcal{K}(l-k)$.

which, together with $\sum_{k\in\mathbb{Z}}\mathcal{K}(k)=1$ yield

$$u(x,t+\tau)-u(x,t)=\sum_{k\in\mathbb{Z}}\mathcal{K}(k)\left(u(x+hk,t)-u(x,t)\right)$$

- ▶ Let $\mathcal{K}(y) = |y|^{-(n+2s)}$ with $s \in (0,1)$.
- ▶ Choose $\tau = h^{2s}$, then $\frac{\mathcal{K}(k)}{\tau} = h^n \mathcal{K}(kh)$

Letting $h, \tau \downarrow 0$,

$$\partial_t u = \int_{\mathbb{D}} \frac{u(x+y,t) - u(x,t)}{|y|^{n+2s}} dy \iff \partial_t u = -(-\Delta)^s u$$

Applications I

Nonlocal operators and fractional diffusion appear in:

- ► Modeling anomalous diffusion (Metzler, Klafter 2004).
- Biophysics (Bueno-Orovio, Kay, Grau, Rodriguez, Burrage 2014)
- ► Turbulence (Chen 2006).
- ► Image processing (Gilboa, Osher 2008) Based on our PDE approach: Gatto, Hesthaven (2014).
- ► Nonlocal field theories (Eringen 2002).
- ► Materials science (Bates 2006).
- Peridynamics (Silling 2000; Du, Gunzburger 2012).
- Lévy processes (Bertoin 1996).
- ► Fractional Navier Stokes equation (Li et al 2012; Debbi 2014):

$$u_t + (-\Delta)^s u + u \nabla u - \nabla p = 0$$

► Fractional Cahn Hilliard equation (Segatti, 2014).

Outline

Motivation

The elliptic linear problem case

Formulation

The Caffarelli-Silvestre extension

Discretization

Interpolation estimates in weighted spaces

Regularity and a priori error estimates

Numerical Experiments

A posteriori error analysis and adaptivity

Space-time fractional parabolic problem

The fractional obstacle problem

Outline

Motivation

The elliptic linear problem case

Formulation

The Caffarelli-Silvestre extension

Discretization

Interpolation estimates in weighted spaces

Regularity and a priori error estimates

Numerical Experiments

A posteriori error analysis and adaptivity

Space-time fractional parabolic problem

The fractional obstacle problem

The linear elliptic problem

Let Ω be a bounded domain with Lipschitz boundary and

$$\mathcal{L}u = -\nabla \cdot (a\nabla u) + cu$$

be a second order, symmetric, elliptic differential operator. Let $s \in (0,1)$. Given $f: \Omega \to \mathbb{R}$, find u such that

$$\mathcal{L}^{s}u=f$$
 in Ω

where \mathcal{L}^s denotes the fractional power of \mathcal{L} supplemented with homogeneous Dirichlet boundary conditions.

Difficulty: \mathcal{L}^s is a nonlocal operator.

Goal: design efficient solution techniques for problems involving \mathcal{L}^s .

From now on $\mathcal{L}=-\Delta.$ All our results hold for a general operator!

Spectral theory

We consider the definition of $(-\Delta)^s$ based on spectral theory:

- ▶ $-\Delta: H^2(\Omega) \cap H^1_0(\Omega) \subset L^2(\Omega) \to L^2(\Omega)$ is symmetric, closed and unbounded and its inverse is compact.
- ▶ The eigenpairs $\{\lambda_k, \varphi_k\}$, i.e.

$$-\Delta\varphi_k = \lambda_k \varphi_k, \qquad \varphi_k|_{\partial\Omega} = 0$$

form an orthonormal basis of $L^2(\Omega)$.

For *u* sufficiently smooth:

$$u = \sum_{k=1}^{\infty} u_k \varphi_k \longmapsto (-\Delta)^s u := \sum_{k=1}^{\infty} u_k \lambda_k^s \varphi_k$$

 $\blacktriangleright \ (-\Delta)^s: \mathbb{H}^s(\Omega) \to \mathbb{H}^{-s}(\Omega), \ \mathbb{H}^s(\Omega) = [H^1_0(\Omega), L^2(\Omega)]_{1-s}.$

Spectral and integral methods

Spectral method: Given $f \in L^2(\Omega)$,

$$f = \sum_{k=1}^{\infty} f_k \varphi_k : \quad (-\Delta)^s u = f \Longrightarrow \quad u_k = f_k \lambda_k^{-s}$$

Algorithm:

- ▶ Compute $\{\lambda_k, \varphi_k\}_{k=1}^N$ and the Fourier coefficients f_k .
- Compute $u_k = f_k \lambda_k^{-s}$.

Disadvantages:

ightharpoonup Quite expensive to compute N eigenpairs when N is large!

Integral method: extend u by zero outside Ω and compute

$$(-\Delta)^{s}u(x)=c_{n,s}p.v.\int_{\mathbb{R}^{n}}\frac{u(x)-u(z)}{|x-z|^{n+2s}}\,\mathrm{d}z,$$

which is equivalent to $\mathcal{F}((-\Delta)^s u)(\xi) = |\xi|^{2s} \mathcal{F}(u)$.

Discretization: Write a weak form and use a Galerkin method. Disadvantages:

Spectral and integral methods

Spectral method: Given $f \in L^2(\Omega)$,

$$f = \sum_{k=1}^{\infty} f_k \varphi_k : (-\Delta)^s u = f \Longrightarrow u_k = f_k \lambda_k^{-s}$$

Algorithm:

- ▶ Compute $\{\lambda_k, \varphi_k\}_{k=1}^N$ and the Fourier coefficients f_k .
- Compute $u_k = f_k \lambda_k^{-s}$.

Disadvantages:

ightharpoonup Quite expensive to compute N eigenpairs when N is large!

Integral method: extend u by zero outside Ω and compute

$$(-\Delta)^{s}u(x)=c_{n,s}p.v.\int_{\mathbb{D}^{n}}\frac{u(x)-u(z)}{|x-z|^{n+2s}}\,\mathrm{d}z,$$

which is equivalent to $\mathcal{F}((-\Delta)^s u)(\xi) = |\xi|^{2s} \mathcal{F}(u)$.

Discretization: Write a weak form and use a Galerkin method. Disadvantages:

- ► Nonlocality ⇒ dense matrix!
 - ► Singularity ⇒ complicated quadrature procedures!

Outline

Motivation

The elliptic linear problem case

Formulation

The Caffarelli-Silvestre extension

Discretization

Interpolation estimates in weighted spaces

Regularity and a priori error estimates

Numerical Experiments

A posteriori error analysis and adaptivity

Space-time fractional parabolic problem

The fractional obstacle problem

$(-\Delta)^{1/2}$: The Dirichlet-to-Neumann operator

▶ DtN: $T: u \mapsto -\partial_v \mathcal{U}(\cdot, 0)$ is such that

$$T^2 u = \partial_y \left(\partial_y \mathcal{U}(\cdot, 0) \right) = -\Delta_{x'} \mathcal{U}(\cdot, 0) = -\Delta_{x'} u.$$

lacksquare T is positive, then $T=(-\Delta_{x'})^{rac{1}{2}}$ and $(-\Delta_{x'})^{rac{1}{2}}u=\partial_{
u}\mathcal{U}.$

The α -harmonic extension

Here:

•
$$s \in (0,1)$$
 and $\alpha = 1 - 2s \in (-1,1)$.

$$d_s = 2^{\alpha} \Gamma(1-s)/\Gamma(s).$$

The α -harmonic extension

Fractional powers of $-\Delta$ can be realized as a DtN operator:

$$\begin{cases} \nabla \cdot (y^{\alpha} \nabla \mathcal{U}) = 0 & \text{in } \mathcal{C} \\ \mathcal{U} = 0 & \text{on } \partial_L \mathcal{C} \\ \partial_{\nu^{\alpha}} \mathcal{U} = d_{\mathfrak{S}} f & \text{on } \Omega \times \{0\} \end{cases} \Longleftrightarrow \begin{cases} (-\Delta)^{\mathfrak{S}} u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

$$u=\mathcal{U}(\cdot,0).$$

Here:

$$ightharpoonup \mathcal{C} = \Omega \times (0, \infty)$$

•
$$\alpha = 1 - 2s \in (-1, 1)$$

$$d_s = 2^{\alpha} \Gamma(1-s)/\Gamma(s)$$

Weak formulation

A possible weak formulation reads

$$\int_{\mathcal{C}} y^{\alpha} \nabla \mathcal{U} \cdot \nabla \phi = d_{s} \langle f, tr_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega), \mathbb{H}^{s}(\Omega)}, \quad \forall \phi \in \mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C}),$$

where

$$\mathring{H}^1_L(y^\alpha,\mathcal{C}) = \left\{ w \in L^2(y^\alpha,\mathcal{C}) : \ \nabla w \in L^2(y^\alpha,\mathcal{C}), \ w|_{\partial_L \mathcal{C}} = 0 \right\}.$$

Muckenhoupt weights

There is a constant C such that for every $a, b \in \mathbb{R}$, with a > b,

$$\frac{1}{b-a} \int_a^b |y|^\alpha \, \mathrm{d}y \cdot \frac{1}{b-a} \int_a^b |y|^{-\alpha} \, \mathrm{d}y \le C$$

which means y^{α} belongs to the Muckenhoupt class A_2 . Then

- ▶ The Hardy-Littlewood maximal operator is continuous on $L^2(y^{\alpha}, \mathcal{C})$.
- ▶ Singular integral operators are continuous on $L^2(y^{\alpha}, C)$.
- $L^2(y^{\alpha}, \mathcal{C}) \hookrightarrow L^1_{loc}(\mathcal{C}).$
- ▶ $H^1(y^{\alpha}, \mathcal{C})$ is Hilbert and $\mathcal{C}_b^{\infty}(\mathcal{C})$ is dense.
- ▶ Traces on $\partial_L C$ are well defined

Muckenhoupt weights

There is a constant C such that for every $a, b \in \mathbb{R}$, with a > b,

$$\frac{1}{b-a} \int_a^b |y|^\alpha \, \mathrm{d}y \cdot \frac{1}{b-a} \int_a^b |y|^{-\alpha} \, \mathrm{d}y \le C$$

which means y^{α} belongs to the Muckenhoupt class A_2 . Then

- ▶ The Hardy-Littlewood maximal operator is continuous on $L^2(y^{\alpha}, \mathcal{C})$.
- ▶ Singular integral operators are continuous on $L^2(y^{\alpha}, C)$.
- $L^2(y^{\alpha},\mathcal{C}) \hookrightarrow L^1_{loc}(\mathcal{C}).$
- ▶ $H^1(y^{\alpha}, \mathcal{C})$ is Hilbert and $\mathcal{C}_b^{\infty}(\mathcal{C})$ is dense.
- ▶ Traces on $\partial_L C$ are well defined.

Weighted Sobolev spaces

▶ Weighted Poincaré inequailty: There is a constant *C*, s.t.

$$\int_{\mathcal{C}} y^{\alpha} |w|^2 \leq C \int_{\mathcal{C}} y^{\alpha} |\nabla w|^2 \quad \forall w \in \mathring{H}^1_L(y^{\alpha}, \mathcal{C}).$$

- ▶ Surjective trace operator $tr_{\Omega}: \mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C}) \to \mathbb{H}^{s}(\Omega)$.
- Lax-Milgram \Longrightarrow existence and uniqueness for every $f \in \mathbb{H}^{-s}(\Omega)$. Also

$$\|\mathcal{U}\|_{\mathring{H}^{1}_{t}(y^{\alpha},\mathcal{C})} = \|u\|_{\mathbb{H}^{s}(\Omega)} = d_{s}\|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

We will discretize the α -harmonic extension!

$$\mathcal{U} \in \mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C}): egin{array}{ll}
abla \cdot (y^{\alpha} \nabla \mathcal{U}) = 0 & \text{in } \mathcal{C} \\
\mathcal{U} = 0 & \text{on } \partial_{L}\mathcal{C} \\
\partial_{\alpha} \mathcal{U} = d f & \text{on } \Omega \times \mathcal{C}
\end{pmatrix}$$

Weighted Sobolev spaces

▶ Weighted Poincaré inequailty: There is a constant *C*, s.t.

$$\int_{\mathcal{C}} y^{\alpha} |w|^2 \leq C \int_{\mathcal{C}} y^{\alpha} |\nabla w|^2 \quad \forall w \in \mathring{H}^1_L(y^{\alpha}, \mathcal{C}).$$

- ▶ Surjective trace operator $tr_{\Omega}: \mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C}) \to \mathbb{H}^{s}(\Omega)$.
- Lax-Milgram \Longrightarrow existence and uniqueness for every $f \in \mathbb{H}^{-s}(\Omega)$. Also

$$\|\mathcal{U}\|_{\dot{H}^{1}_{I}(y^{\alpha},\mathcal{C})} = \|u\|_{\mathbb{H}^{s}(\Omega)} = d_{s}\|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

We will discretize the α -harmonic extension!

$$\mathcal{U} \in \mathring{\mathcal{H}}^1_L(y^{lpha},\mathcal{C}): egin{array}{ll}
abla \cdot (y^{lpha}
abla \mathcal{U}) = 0 & ext{in } \mathcal{C} \
abla = 0 & ext{on } \partial_L \mathcal{C} \
abla_{
u^{lpha}} \mathcal{U} = d_s f & ext{on } \Omega imes \{0\} \end{array}$$

Separation of Variables

Apply separation of variables (Capella et al. 2011)

$$u(x') = \sum_{k=1}^{\infty} u_k \varphi_k(x') \Longrightarrow \mathcal{U}(x', y) = \sum_{k=1}^{\infty} u_k \varphi_k(x') \psi_k(y),$$

where the functions ψ_k solve

$$\begin{cases} \psi_k'' + \frac{\alpha}{y} \psi_k' - \lambda_k \psi_k = 0, & \text{in } (0, \infty), \\ \psi_k(0) = 1, & \lim_{y \to \infty} \psi_k(y) = 0. \end{cases}$$

It turns out that

$$\psi_k(y) = c_s \left(\sqrt{\lambda_k}y\right)^s K_s(\sqrt{\lambda_k}y),$$

 K_s – modified Bessel function of the second kind.

Outline

Motivation

The elliptic linear problem case

Formulation

The Caffarelli-Silvestre extension

Discretization

Interpolation estimates in weighted spaces

Regularity and a priori error estimates

Numerical Experiments

A posteriori error analysis and adaptivity

Space-time fractional parabolic problem

The fractional obstacle problem

Domain truncation

The domain $\mathcal C$ is infinite. We need to consider a truncated problem.

Theorem (exponential decay)

For every $\mathcal{Y} > 0$

$$\|\mathcal{U}\|_{\dot{B}^1_L(y^\alpha,\Omega\times(\mathcal{Y},\infty))}\lesssim e^{-\sqrt{\lambda_1}\mathcal{Y}/2}\|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

Let v solve

$$\begin{cases} \nabla \cdot (y^{\alpha} \nabla v) = 0 & \text{in } \mathcal{C}_{\mathcal{Y}} = \Omega \times (0, \mathcal{Y}), \\ v = 0 & \text{on } \partial_{L} \mathcal{C}_{\mathcal{Y}} \cup \Omega \times \{\mathcal{Y}\}, \\ \partial_{\nu^{\alpha}} v = d_{s} f & \text{on } \Omega \times \{0\}. \end{cases}$$

Theorem (exponential convergence)

For all $\gamma > 0$,

$$\|\mathcal{U}-v\|_{\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{Y}})}\lesssim e^{-\sqrt{\lambda_{1}}\mathcal{Y}/4}\|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

Finite element method I

► Continuous solution. V-Hilbert space. Find *u* s.t.

$$\mathscr{B}[u,v] = \mathscr{F}[v], \quad \forall v \in \mathbb{V}.$$

 \mathscr{B} -continuous and coercive bilinear form, and \mathscr{F} -continuous linear functional.

▶ Approximate solution. Let \mathbb{V}_N be a finite dimensional space. Find U_N s.t.

$$\mathscr{B}[U_{\mathrm{N}}, V_{\mathrm{N}}] = \mathscr{F}[V_{\mathrm{N}}], \qquad \forall v \in \mathbb{V}_{\mathrm{N}}.$$

Finite element method I

► Continuous solution. V-Hilbert space. Find *u* s.t.

$$\mathscr{B}[u,v] = \mathscr{F}[v], \quad \forall v \in \mathbb{V}.$$

 \mathscr{B} -continuous and coercive bilinear form, and \mathscr{F} -continuous linear functional.

 \blacktriangleright Approximate solution. Let \mathbb{V}_N be a finite dimensional space. Find \textit{U}_N s.t.

$$\mathscr{B}[U_{N}, V_{N}] = \mathscr{F}[V_{N}], \qquad \forall v \in \mathbb{V}_{N}.$$

Finite element method I

► Continuous solution. V-Hilbert space. Find *u* s.t.

$$\mathscr{B}[u,v] = \mathscr{F}[v], \quad \forall v \in \mathbb{V}.$$

 \mathscr{B} -continuous and coercive bilinear form, and \mathscr{F} -continuous linear functional.

▶ Approximate solution. Let \mathbb{V}_N be a finite dimensional space. Find U_N s.t.

$$\mathscr{B}[U_{N}, V_{N}] = \mathscr{F}[V_{N}], \qquad \forall v \in \mathbb{V}_{N}.$$

Finite element method II

► Continuous solution. V-Hilbert space. Find *u* s.t.

$$\mathscr{B}[u,v] = \mathscr{F}[v], \quad \forall v \in \mathbb{V}.$$

 \mathscr{B} -continuous and coercive bilinear form, and \mathscr{F} -continuous linear functional.

▶ Approximate solution. Let \mathbb{V}_N be a finite dimensional space. Find U_N s.t.

$$\mathscr{B}[U_{\mathrm{N}}, V_{\mathrm{N}}] = \mathscr{F}[V_{\mathrm{N}}], \qquad \forall v \in \mathbb{V}_{\mathrm{N}}.$$

- Error estimates.
 - ▶ A priori. Convergence, a rate of convergence, and know the depende of the error on different factors. Typical estimate:

$$||u - U_{\mathbf{N}}||_{\mathbb{V}} \lesssim N^{-a}||u|| \approx h^b||u||$$

A posteriori. Information beyond asymptotics; computable in terms of \mathscr{F} and U_N . Quality assessment; adaptivity.

Galerkin method: mesh

Let $\mathscr{T}_{\Omega} = \{K\}$ be triangulation of Ω (simplices or cubes)

• \mathscr{T}_{Ω} is conforming and shape regular.

Let $\mathscr{T}_{\mathscr{Y}} = \{T\}$ be a triangulation of $\mathcal{C}_{\mathscr{Y}}$ into cells of the form

$$T = K \times I$$
, $K \in \mathscr{T}_{\Omega}$, $I = (a, b)$.

Why? Natural on the cylinder $\mathcal{C}_{\mathcal{Y}}$, deal.ii, and $\mathcal{U}_{yy} \approx y^{-\alpha-1}$ as $y \approx 0+$

Approximation of singular functions \implies anisotropic elements

Shape regularity condition does NOT hold!

Galerkin method: discrete spaces

We only require that if $T = K \times I$ and $T' = K' \times I'$ are neighbors

$$\frac{|I|}{|I'|} \simeq 1,$$

so the lengths of I and I' are comparable. This weak condition allows us to consider anisotropic meshes

Define:

$$\mathbb{V}(\mathscr{T}_{\mathcal{Y}}) = \left\{ W \in \mathcal{C}^0(\overline{\mathcal{C}_{\mathcal{Y}}}): \ W|_T \in \mathcal{P}_1(T), \ W|_{\Gamma_D} = 0 \right\}$$

with $\Gamma_D = \partial_L \mathcal{C} \cup \Omega \times \{\mathcal{Y}\}$, and

$$\mathbb{U}(\mathscr{T}_{\Omega})=tr_{\Omega}\mathbb{V}(\mathscr{T}_{\gamma})=\left\{W\in\mathcal{C}^{0}(\bar{\Omega}):\ W|_{K}\in\mathcal{P}_{1}(K),\ W_{\partial\Omega}=0\right\}$$

Galerkin method: discrete problem

Galerkin method for the extension: Find $V_{\mathscr{T}_{\gamma}} \in \mathbb{V}(\mathscr{T}_{\gamma})$ such that

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla V_{\mathscr{T}_{\mathcal{Y}}} \nabla W = d_{s} \langle f, tr_{\Omega} W \rangle_{\mathbb{H}^{-s}(\Omega), \mathbb{H}^{s}(\Omega)}, \quad \forall W \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})$$

Define:

$$oxed{U_{\mathscr{T}_\Omega} = \mathit{tr}_\Omega V_{\mathscr{T}_\mathcal{Y}} \in \mathbb{U}(\mathscr{T}_\Omega)}$$

A trace estimate and Cèa's Lemma imply quasi-best approximation:

$$\begin{aligned} \|u - U_{\mathscr{T}_{\Omega}}\|_{\mathbb{H}^{s}(\Omega)} &\lesssim \|v - V_{\mathscr{T}_{y}}\|_{\mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C}_{y})} \\ &= \inf_{W \in \mathbb{V}(\mathscr{T}_{y})} \|v - W\|_{\mathring{H}^{1}_{L}(y^{\alpha}, \mathcal{C}_{y})} \end{aligned}$$

Outline

Motivation

The elliptic linear problem case

Formulation

The Caffarelli-Silvestre extension

Discretization

Interpolation estimates in weighted spaces

Regularity and a priori error estimates

Numerical Experiments

A posteriori error analysis and adaptivity

Space-time fractional parabolic problem

The fractional obstacle problem

The averaged Taylor polynomial

Consider $\omega \in A_2(\mathbb{R}^N)$ and $\phi \in L^2(\omega, D)$, with $D \subset \mathbb{R}^N$. Given a node z of the mesh, we define

Given $m \in \mathbb{N}$, we define

$$Q_z^m \phi(y) = \int \sum_{|\alpha| \le m} \frac{1}{\alpha!} D^{\alpha} \phi(x) (y - x)^{\alpha} \psi_z(x) \, \mathrm{d}x.$$

A weighted Poincaré inequailty yields

$$\|\phi - Q_z^0 \phi\|_{L^2(\omega, S_z)} \lesssim \operatorname{diam}(S_z) \|\nabla \phi\|_{L^2(\omega, S_z)}$$

which, via an induction argument, allows us to derive

The averaged Taylor polynomial

Consider $\omega \in A_2(\mathbb{R}^N)$ and $\phi \in L^2(\omega, D)$, with $D \subset \mathbb{R}^N$. Given a node z of the mesh, we define

Given $m \in \mathbb{N}$, we define

$$Q_z^m \phi(y) = \int \sum_{|z| < m} \frac{1}{\alpha!} D^{\alpha} \phi(x) (y - x)^{\alpha} \psi_z(x) dx.$$

A weighted Poincaré inequailty yields

$$\|\phi - Q_z^0 \phi\|_{L^2(\omega, S_z)} \lesssim \operatorname{diam}(S_z) \|\nabla \phi\|_{L^2(\omega, S_z)},$$

which, via an induction argument, allows us to derive

The quasi-interpolant operator

We introduce an averaged interpolation operator Π á la Duran Lombardi, 2005 (Sobolev 1950, Dupont Scott 1980)

$$\Pi\phi(z)=Q_z^m\phi(z).$$

Notice that

- ▶ This is defined for all polynomial degree *m* and any element shape (simplices or rectangles).
- ► We do not go back to the reference element This is important for anisotropic estimates.

The mesh is rectangular and Cartesian. If R and S are neighbors

$$h_R^i/h_S^i \lesssim 1, \qquad i = \overline{1, N}.$$

The quasi-interpolant operator

We introduce an averaged interpolation operator Π á la Duran Lombardi, 2005 (Sobolev 1950, Dupont Scott 1980)

$$\Pi\phi(z)=Q_z^m\phi(z).$$

Notice that:

- ▶ This is defined for all polynomial degree *m* and any element shape (simplices or rectangles).
- ► We do not go back to the reference element This is important for anisotropic estimates.

The mesh is rectangular and Cartesian. If R and S are neighbors

$$h_R^i/h_S^i \lesssim 1, \qquad i = \overline{1, N}.$$

The quasi-interpolant operator

We introduce an averaged interpolation operator Π á la Duran Lombardi, 2005 (Sobolev 1950, Dupont Scott 1980)

$$\Pi\phi(z)=Q_z^m\phi(z).$$

Notice that:

- ▶ This is defined for all polynomial degree *m* and any element shape (simplices or rectangles).
- ▶ We do not go back to the reference element This is important for anisotropic estimates.

The mesh is rectangular and Cartesian. If R and S are neighbors

$$h_R^i/h_S^i \lesssim 1, \qquad i = \overline{1, N}.$$

Error estimates on rectangles

Theorem If $\phi \in H^1(\omega, S_R)$

$$\|\phi - \Pi\phi\|_{L^2(\omega,R)} \lesssim \sum_{i=1}^N h_R^i \|\partial_i\phi\|_{L^2(\omega,S_R)}.$$

If
$$\phi \in H^2(\omega, S_R)$$

$$\|\partial_{j}(\phi - \Pi\phi)\|_{L^{2}(\omega,R)} \lesssim \sum_{i=1}^{N} h_{R}^{i} \|\partial_{i}\partial_{j}\phi\|_{L^{2}(\omega,S_{R})},$$
$$\|\phi - \Pi\phi\|_{L^{2}(\omega,R)} \lesssim \sum_{i=1}^{N} h_{R}^{i} h_{R}^{j} \|\partial_{i}\partial_{j}\phi\|_{L^{2}(\omega,S_{R})}.$$

Error estimates on rectangles

Theorem

If
$$\omega \in A_p(\mathbb{R}^N)$$
, and $\phi \in H^1(\omega, S_R)$ $W^1_p(\omega, S_R)$

$$\|\phi - \Pi\phi\|_{L^p(\omega,R)} \lesssim \sum_{i=1}^N h_R^i \|\partial_i\phi\|_{L^p(\omega,S_R)}.$$

If
$$\phi \in H^2(\omega, S_R)$$
 $W_p^2(\omega, S_R)$

$$\begin{split} \|\partial_j(\phi - \Pi\phi)\|_{L^p(\omega,R)} \lesssim \sum_{i=1}^N h_R^i \|\partial_i\partial_j\phi\|_{L^p(\omega,S_R)}, \\ \|\phi - \Pi\phi\|_{L^p(\omega,R)} \lesssim \sum_{i=1}^N h_R^i h_R^j \|\partial_i\partial_j\phi\|_{L^p(\omega,S_R)}. \end{split}$$

Estimates on simplicial elements, different metrics and applications is

Error estimates on rectangles

Theorem

If
$$\omega \in A_p(\mathbb{R}^N)$$
, and $\phi \in H^1(\omega, S_R)$ $W_p^1(\omega, S_R)$

$$\|\phi - \Pi\phi\|_{L^p(\omega,R)} \lesssim \sum_{i=1}^N h_R^i \|\partial_i\phi\|_{L^p(\omega,S_R)}.$$

If
$$\phi \in H^2(\omega, S_R)$$
 $W_p^2(\omega, S_R)$

$$\|\partial_{j}(\phi - \Pi\phi)\|_{L^{p}(\omega,R)} \lesssim \sum_{i=1}^{N} h_{R}^{i} \|\partial_{i}\partial_{j}\phi\|_{L^{p}(\omega,S_{R})},$$
$$\|\phi - \Pi\phi\|_{L^{p}(\omega,R)} \lesssim \sum_{i=1}^{N} h_{R}^{i} h_{R}^{j} \|\partial_{i}\partial_{j}\phi\|_{L^{p}(\omega,S_{R})}.$$

Estimates on simplicial elements, different metrics and applications in RHN FO AIS Piecewise polynomial interpolation in Muckenhount

Outline

Motivation

The elliptic linear problem case

Formulation

The Caffarelli-Silvestre extension

Discretization

Interpolation estimates in weighted spaces

Regularity and a priori error estimates

Numerical Experiments

A posteriori error analysis and adaptivity

Space-time fractional parabolic problem

The fractional obstacle problem

Regularity of Extension \mathcal{U}

Using properties of Bessel functions we obtain

$$\psi_k''(y) \approx y^{-\alpha-1}, \quad y \downarrow 0 \qquad \Longrightarrow \qquad \mathcal{U} \notin H^2(\mathcal{C}, y^{\alpha}).$$

But

Theorem (regularity of the extension)

If $f \in \mathbb{H}^{1-s}(\Omega)$ and Ω is $C^{1,1}$ or a convex polygon

$$\|\Delta_{x'}\mathcal{U}\|_{L^2(\mathcal{C},y^{\alpha})}^2 + \|\partial_y\nabla_{x'}\mathcal{U}\|_{L^2(\mathcal{C},y^{\alpha})}^2 = d_s\|f\|_{\mathbb{H}^{1-s}(\Omega)}^2$$

If
$$\beta > 1 + 2\alpha$$

$$\|\partial_{yy}\mathcal{U}\|_{L^2(\mathcal{C},y^{\boldsymbol{\beta}})} \lesssim \|f\|_{L^2(\Omega)}$$

Anisotropic estimates compensate singular behavior!

Error Estimates: Quasi-uniform Meshes

On uniform meshes $h_T \approx h_K \approx h_I$ for all $T \in \mathcal{T}_{\mathcal{Y}}$, then

Theorem (error estimates)

The following estimate holds for all $\epsilon > 0$

$$\begin{split} \|\nabla(v - V_{\mathscr{T}_{y}})\|_{L^{2}(\mathcal{C}_{y}, y^{\alpha})} \lesssim h_{K} \|\partial_{y} \nabla_{x'} v\|_{L^{2}(\mathcal{C}, y^{\alpha})} + h_{I}^{s-\epsilon} \|\partial_{yy} v\|_{L^{2}(\mathcal{C}, y^{\beta})} \\ \lesssim h^{s-\epsilon} \|f\|_{\mathbb{H}^{1-s}(\Omega)} \end{split}$$

Consequently,

$$\|u-U_{\mathscr{T}_{\Omega}}\|_{\mathbb{H}^{s}(\Omega)}\lesssim h^{s-\epsilon}\|f\|_{\mathbb{H}^{1-s}(\Omega)}.$$

- This is suboptimal in terms of order (only order $s \epsilon$)
- It cannot be improved as numerical experimentation reveals!

Numerical Experiment: Quasi-uniform Mesh

Let $\Omega = (0,1)$ and $f = \pi^{2s} \sin(\pi x)$, then

$$\mathcal{U} = \frac{2^{1-s}\pi^s}{\Gamma(s)}\sin(\pi x')y^s \mathcal{K}_s(\pi y)$$

If s = 0.2, then

Error Estimates: Graded Meshes

We use the principle of error equilibration. Mesh on $(0, \mathcal{Y})$

$$y_j = \mathcal{Y}\left(\frac{j}{M}\right)^{\gamma}, \quad j = \overline{0, M}, \quad \gamma > 1$$

 $\psi_k''(y) \approx y^{-\alpha-1} \Longrightarrow$ energy equidistribution for $\gamma > 3/(1-\alpha)$.

Theorem (error estimates)

If
$$f \in \mathbb{H}^{1-s}(\Omega)$$
 and $\mathcal{Y} \approx |\log N|$,

$$||u - U_{\mathscr{T}_{\Omega}}||_{\mathbb{H}^{s}(\Omega)} = ||\nabla(\mathcal{U} - V_{\mathscr{T}_{y}})||_{L^{2}(\mathcal{C}, y^{\alpha})}$$

$$\lesssim |\log N|^{s} N^{-\frac{1}{n+1}} ||f||_{\mathbb{H}^{1-s}(\Omega)},$$

or equivalently

$$\|u-U_{\mathscr{T}_{\Omega}}\|_{\mathbb{H}^{s}(\Omega)}\lesssim |\log N_{\Omega}|^{s}N_{\Omega}^{-1/n}\|u\|_{\mathbb{H}^{1+s}(\Omega)}.$$

Outline

Motivation

The elliptic linear problem case

Formulation

The Caffarelli-Silvestre extension

Discretization

Interpolation estimates in weighted spaces

Regularity and a priori error estimates

Numerical Experiments

A posteriori error analysis and adaptivity

Space-time fractional parabolic problem

The fractional obstacle problem

Numerical Experiments: Meshes for Circle and s = 0.3

Set
$$\Omega = D(0,1) \subset \mathbb{R}^2$$
,

Figure : Uniform mesh in x' and anisotropic mesh in y

Experimental Rates for Circle and s = 0.3 and s = 0.7

Set $\Omega = D(0,1) \subset \mathbb{R}^2$, $f = j_{1,1}^{2s} J_1(j_{1,1}r) (A_{1,1} \cos(\theta) + B_{1,1} \sin(\theta))$. With graded meshes:

The experimental convergence rate -1/3 is optimal!

RHN, EO, AJS. A PDE approach to fractional diffusion in general domains: a priori error analysis, Found. Comput. Math. (2014).

Outline

Motivation

The elliptic linear problem case

Formulation

The Caffarelli-Silvestre extension

Discretization

Interpolation estimates in weighted spaces

Regularity and a priori error estimates

Numerical Experiments

A posteriori error analysis and adaptivity

Space-time fractional parabolic problem

The fractional obstacle problem

Adaptivity

Adaptivity is motivated by

- Computational efficiency: extra n + 1-dimension.
- The a priori theory requires
 - regularity of the datum: $f \in \mathbb{H}^{1-s}(\Omega)$.
 - regularity of the domain: Ω is $C^{1,1}$ or a convex polygon.
- If one of these conditions is violated, the solution $\mathcal U$ may have singularities in Ω and exhibit fractional regularity.
- Quasi-uniform refinement of Ω would not result in an efficient solution technique.
- We need an adaptive loop.

An adaptive loop

Our adaptive loop is *almost* standard:

$$SOLVE \rightarrow ESTIMATE \rightarrow MARK \rightarrow REFINE$$

with

- ▶ **SOLVE**: Finds $V_{\mathscr{T}_{\gamma}}$, the Galerkin solution.
- ▶ **ESTIMATE**: Compute $\mathcal{E}_{z'}$ for every node $z' \in \Omega$.
- ▶ MARK: For $\theta \in (0,1)$ choose a minimal subset of nodes \mathcal{M} :

$$\sum_{z' \in \mathcal{M}} \mathcal{E}_{z'}^2 \geq \theta^2 \mathcal{E}_{\mathcal{T}}^2.$$

- ▶ **REFINE**: Given \mathcal{M} :
 - 1. $\forall z' \in \mathcal{M}$ refine the cells $K \ni z'$ to get $\tilde{\mathscr{T}}_{\Omega}$.
 - 2. Create an anisotropic mesh $\{\tilde{I}\}$ with M so that grading holds.
 - 3. The refined mesh is $\tilde{\mathscr{T}}_{\mathscr{T}} = \tilde{\mathscr{T}}_{\Omega} \times \{\tilde{I}\}.$

Adaptivity

One of the main ingredients of our adaptive loop is an a posteriori error estimator.

Despite of what might be claimed, the theory of a posteriori error estimation on anisotropic discretizations is still in its infancy.

We propose an error estimator based on solving local problem on stars:

An ideal error estimator

Define

$$\mathbb{W}(\mathcal{C}_{z'}) = \left\{ w \in H^1(y^{\alpha}, \mathcal{C}_{z'}) : w = 0 \text{ on } \partial \mathcal{C}_{z'} \setminus \Omega \times \{0\} \right\}.$$

For $z' \in \Omega$ a node, we define the ideal estimator $\zeta_{z'} \in \mathbb{W}(\mathcal{C}_{z'})$:

$$\int_{\mathcal{C}_{z'}} y^{\alpha} \nabla \zeta_{z'} \nabla \psi = d_{s} \langle f, tr_{\Omega} \psi \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)} - \int_{\mathcal{C}_{z'}} y^{\alpha} \nabla V \nabla \psi$$

for all $\psi \in \mathbb{W}(\mathcal{C}_{z'})$, and

$$ilde{\mathcal{E}}_{\mathscr{T}_{\mathcal{Y}}} = \left(\sum_{\mathbf{z}'} ilde{\mathcal{E}}_{\mathbf{z}'}^2\right)^{1/2}, \quad \mathcal{E}_{\mathbf{z}'} = \|\nabla \zeta_{\mathbf{z}'}\|_{L^2(y^{lpha}, \mathcal{C}_{\mathbf{z}'})}.$$

Theorem (ideal estimator

We have

$$\|\nabla e\|_{L^2(y^{lpha},\mathcal{C}_{\mathcal{Y}})}\lesssim \widetilde{\mathcal{E}}_{\mathscr{T}_{\mathcal{Y}}}$$

and, for every node $z' \in \Omega$

An ideal error estimator

Define

$$\mathbb{W}(\mathcal{C}_{z'}) = \left\{ w \in H^1(y^\alpha, \mathcal{C}_{z'}) : \ w = 0 \text{ on } \partial \mathcal{C}_{z'} \setminus \Omega \times \{0\} \right\}.$$

For $z' \in \Omega$ a node, we define the ideal estimator $\zeta_{z'} \in \mathbb{W}(\mathcal{C}_{z'})$:

$$\int_{\mathcal{C}_{z'}} y^{\alpha} \nabla \zeta_{z'} \nabla \psi = d_{\mathsf{S}} \langle f, tr_{\Omega} \psi \rangle_{\mathbb{H}^{-\mathsf{s}}(\Omega) \times \mathbb{H}^{\mathsf{s}}(\Omega)} - \int_{\mathcal{C}_{z'}} y^{\alpha} \nabla V \nabla \psi$$

for all $\psi \in \mathbb{W}(\mathcal{C}_{z'})$, and

$$ilde{\mathcal{E}}_{\mathscr{T}_{\mathcal{Y}}} = \left(\sum_{\mathbf{z}'} ilde{\mathcal{E}}_{\mathbf{z}'}^2\right)^{1/2}, \quad \mathcal{E}_{\mathbf{z}'} = \|\nabla \zeta_{\mathbf{z}'}\|_{L^2(y^{lpha}, \mathcal{C}_{\mathbf{z}'})}.$$

Theorem (ideal estimator)

We have

$$\|
abla e\|_{L^2(y^lpha,\mathcal{C}_\mathcal{Y})}\lesssim ilde{\mathcal{E}}_\mathscr{T_\mathcal{Y}}$$

and, for every node $z' \in \Omega$

Local Problems on Stars

• Discretization based on \mathbb{P}_2 : Discrete space $\mathcal{W}(\mathcal{C}_{z'})$. Then, we define

$$\mathcal{E}_{z'}^2 := \int_{\mathcal{C}_{z'}} y^{\alpha} |\nabla W_{z'}|^2, \qquad \mathcal{E}_{\mathscr{T}_{\Omega}}^2 := \sum_{z'} \mathcal{E}_{z'}^2.$$

• Define the data oscillation. If $f_{z'|K} = \frac{1}{|K|} \int_K f$ then

$$\operatorname{osc}_{\mathscr{T}_{\Omega}}(f)^{2} = \sum_{z'} \operatorname{osc}_{z'}(f)^{2}, \quad \operatorname{osc}_{z'}(f)^{2} = d_{s} h_{z'}^{2s} \|f - f_{z'}\|_{L^{2}(S_{z'})}^{2}$$

Theorem (computable estimator)

$$\mathcal{E}^2 \lesssim \|\nabla (v - V_{\mathcal{T}_{y}})\|_{L^2(y^\alpha, \mathcal{C}_{y'})}^2 \lesssim \mathcal{E}^2 + \operatorname{osc}(y^\alpha, V_{\mathcal{T}_{y'}}, f, \mathcal{C}_{z'})^2$$

L-shaped domain with incompatible data

- ▶ Ω is the standard L-shaped domain. f=1. For $s<\frac{1}{2}$ the data is not compatible with the problem.
- ► The nature of the singularity of the solution is not known for this problem.

L-shaped domain with incompatible data

Some meshes:

$$s = 0.2$$

$$s = 0.8$$

A posteriori error analysis and adaptivity

LC, RHN, EO, AJS: A PDE approach to fractional diffusion in general domains: a posteriori error analysis . J. Comput. Phys. (2015).

- ▶ Question: Is there any theory on anisotropic error estimators? (Cohen Mirebeau 2010-2012) (Petrushev 2007-2009)?
- ► A posteriori error estimators, convergence of AFEM, convergence rates for AFEM are still open questions.

Outline

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

Formulation

Localization

Discretization

The fractional obstacle problem

An optimal control problem

Conclusions and future work

Outline

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem Formulation

Localization

Discretization

The fractional obstacle problem

An optimal control problem

Conclusions and future work

Space-time fractional parabolic problem

Let T>0 be some positive time. Given $f:\Omega\to\mathbb{R}$ and $u_0:\Omega\to\mathbb{R}$ the problem reads: Find u such that

$$\partial_t^{\gamma} u + (-\Delta)^s u = f \text{ in } \Omega \times (0, T] \quad u|_{t=0} = u_0 \text{ in } \Omega.$$

Here $\gamma \in (0,1]$. For $\gamma = 1$ this is the usual time derivative, if $\gamma < 1$ we consider the Caputo derivative

$$\partial_t^{\gamma} u(x,t) = \frac{1}{\Gamma(1-\gamma)} \int_0^t \frac{\partial_r u(x,r)}{(t-r)^{\gamma}} dr.$$

Nonlocality in space and time!
We will overcome the nonlocality in space using the
Caffarelli-Silvestre extension.

Outline

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

Formulation

Localization

Discretization

The fractional obstacle problem

An optimal control problem

Conclusions and future work

Extended evolution problem

The Caffarelli-Silvestre extension turns our problem into a quasi stationary elliptic problem with dynamic boundary condition

$$\begin{cases} -\nabla \cdot \left(y^{\alpha} \nabla \mathcal{U}\right) = 0, & \text{in } \mathcal{C}, \ t \in (0, T), \\ \mathcal{U} = 0, & \text{on } \partial_L \mathcal{C}, \ t \in (0, T), \\ d_s \partial_t^{\gamma} \mathcal{U} + \frac{\partial \mathcal{U}}{\partial \nu^{\alpha}} = d_s f, & \text{on } \Omega \times \{0\}, \ t \in (0, T), \\ \mathcal{U} = \mathsf{u}_0, & \text{on } \Omega \times \{0\}, \ t = 0. \end{cases}$$

$$\mathsf{Connection:} \ \mathsf{u} = t r_{\Omega} \ \mathcal{U}, \ \alpha = 1 - 2s.$$

Nonlocality just in time!

Weak formulation: seek $\mathcal{U} \in \mathbb{V}$ such that for a.e. $t \in (0, T)$

$$\begin{cases} \langle tr_{\Omega}\partial_t^{\gamma}\mathcal{U}, tr_{\Omega}\phi\rangle_{\mathbb{H}^{-s}(\Omega)\times\mathbb{H}^{s}(\Omega)} + \mathsf{a}(w,\phi) = \langle f, tr_{\Omega}\phi\rangle_{\mathbb{H}^{-s}(\Omega)\times\mathbb{H}^{s}(\Omega)}, \\ tr_{\Omega}\mathcal{U}(0) = \mathsf{u}_0 \end{cases}$$

for all $\phi \in \mathring{H}^1_L(\mathcal{C}, y^{\alpha})$, where

Extended evolution problem

The Caffarelli-Silvestre extension turns our problem into a quasi stationary elliptic problem with dynamic boundary condition

$$\begin{cases} -\nabla \cdot (y^{\alpha} \nabla \mathcal{U}) = 0, & \text{in } \mathcal{C}, \ t \in (0, T), \\ \mathcal{U} = 0, & \text{on } \partial_L \mathcal{C}, \ t \in (0, T), \\ d_s \partial_t^{\gamma} \mathcal{U} + \frac{\partial \mathcal{U}}{\partial \nu^{\alpha}} = d_s f, & \text{on } \Omega \times \{0\}, \ t \in (0, T), \\ \mathcal{U} = \mathsf{u}_0, & \text{on } \Omega \times \{0\}, \ t = 0. \end{cases}$$

Connection: $u = tr_{\Omega} U$, $\alpha = 1 - 2s$.

Nonlocality just in time!

Weak formulation: seek $\mathcal{U} \in \mathbb{V}$ such that for a.e. $t \in (0, T)$,

$$\begin{cases} \langle \textit{tr}_{\Omega} \partial_t^{\gamma} \mathcal{U}, \textit{tr}_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)} + \textit{a}(\textit{w}, \phi) = \langle \textit{f}, \textit{tr}_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)}, \\ \textit{tr}_{\Omega} \mathcal{U}(0) = \mathsf{u}_0 \end{cases}$$

for all $\phi \in \mathring{H}^{1}(\mathcal{C}, y^{\alpha})$, where

Truncation

 $\mathcal C$ is infinite, but we have exponential decay.

Theorem

Let $\gamma \in (0,1]$ and $s \in (0,1)$. If $\gamma > 1$ then

$$\|\nabla \mathcal{U}\|_{L^2(0,T;L^2(\Omega\times (\mathcal{Y},\infty),y^\alpha))}\lesssim e^{-\sqrt{\lambda_1}/2}$$

- This allows us to consider a truncated problem.
- In doing so we commit only an exponentially small error

$$I^{1-\gamma}\|\operatorname{tr}_{\Omega}(\mathcal{U}-v)\|_{L^{2}(\Omega)}^{2}+\|\nabla(\mathcal{U}-v)\|_{L^{2}(0,T;L^{2}(\mathcal{C}_{\mathcal{Y}},y^{\alpha}))}\lesssim e^{-\sqrt{\lambda_{1}}\mathcal{Y}}$$

where I^{σ} is the *Riemann Liouville* fractional integral of order σ .

Outline

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

Formulation

Localization

Discretization

The fractional obstacle problem

An optimal control problem

Conclusions and future work

Time discretization for $\gamma = 1$

Time step $\tau = T/\mathcal{K}$. Compute $V^{\tau} = \{V^k\}_{k=0}^{\mathcal{K}} \subset \mathring{H}_L^1(y^{\alpha}, \mathcal{C})$, where V^k denotes an approximation at each time step. For $\gamma = 1$, we consider backward Euler

- We initialize by setting $tr_{\Omega}V^0 = u_0$.
- For $k=0,\ldots,\mathcal{K}-1$, we find $V^{k+1}\in \mathring{H}^1_L(y^\alpha,\mathcal{C})$ solution of $(tr_\Omega\partial V^{k+1},tr_\Omega W)_{L^2(\Omega)}+a(V^{k+1},W)=\langle f^{k+1},tr_\Omega W\rangle_{\mathbb{H}^{-s}(\Omega)\times\mathbb{H}^s(\Omega)},$

for all $W \in \mathring{H}^1_L(\mathcal{C}, y^{\alpha})$, where $f^{k+1} = f(t^{k+1})$.

Unconditional stability:

$$\|tr_{\Omega}V^{\tau}\|_{\ell^{\infty}(L^{2}(\Omega))}^{2}+\|V^{\tau}\|_{\ell^{2}(\mathring{H}^{1}_{t}(y^{\alpha},\mathcal{C}))}^{2}\lesssim \|u_{0}\|_{L^{2}(\Omega)}^{2}+\|f^{\tau}\|_{\ell^{2}(\mathbb{H}^{-s}(\Omega))}^{2}.$$

Time discretization for $\gamma \in (0,1)$

For $\gamma \in (0,1)$, we consider the so-called L1 scheme

$$\partial_t^{\gamma} u(x, t_{k+1}) = \frac{1}{\Gamma(1-\gamma)} \int_0^{t_{k+1}} \frac{\partial_r u(x, r)}{(t_{k+1} - r)^{\gamma}} dr$$

$$\approx \frac{1}{\Gamma(2-\gamma)} \sum_{j=0}^k a_j \frac{u(x, t_{k+1-j}) - u(x, t_{k-j})}{\tau^{\gamma}}$$

$$= D^{\gamma} u(x)^{k+1}$$

where $a_j = (j + 1)^{1-\gamma} - j^{1-\gamma}$.

For $\gamma \in (0,1)$, the scheme reads

- We initialize by setting $tr_{\Omega}V^0 = u_0$.
- ▶ For $k=0,\ldots,\mathcal{K}-1$, we find $V^{k+1}\in \mathring{H}^1_L(\mathcal{C},y^{lpha})$ solution of

$$(\mathit{tr}_{\Omega} D^{\gamma} V^{k+1}, \mathit{tr}_{\Omega} W)_{L^{2}(\Omega)} + \mathsf{a}(V^{k+1}, W) = \langle f^{k+1}, \mathit{tr}_{\Omega} W \rangle_{\mathbb{H}^{-s}(\Omega)}$$

Time discretization for $\gamma \in (0,1)$. Stability

The lack of fractional integration by parts makes it difficult to obtain energy estimates. We obtain new semidiscrete energy estimates for the L1 scheme

Theorem (stability)

$$I^{1-\gamma} \| \text{tr}_{\Omega} V^{\tau} \|_{L^{2}(\Omega)}^{2} + \| V^{\tau} \|_{\ell^{2}(\mathring{H}^{1}_{L}(\mathcal{C}, y^{\alpha}))}^{2} \leq I^{1-\gamma} \| u_{0} \|_{L^{2}(\Omega)}^{2} + \| f^{\tau} \|_{\ell^{2}(\mathbb{H}^{-s}(\Omega))}^{2},$$

Since these are uniform in τ and the scheme is consistent¹ we derive a novel continuous energy estimate

Theorem (energy estimates)

$$I^{1-\gamma} \| tr_{\Omega} \mathcal{U} \|_{L^{2}(\Omega)}^{2} + \| \mathcal{U} \|_{\ell^{2}(\mathring{H}_{L}^{1}(\mathcal{C}, y^{\alpha}))}^{2} \leq I^{1-\gamma} \| u_{0} \|_{L^{2}(\Omega)}^{2} + \| f^{\tau} \|_{\ell^{2}(\mathbb{H}^{-s}(\Omega))}^{2}.$$

¹see next slide

Time discretization for $\gamma \in (0,1)$. Consistency

- ▶ The literature analyzes the L1 scheme assuming smoothness of the solution $u \in C^2([0, T], \mathbb{H}^{-s}(\Omega))$.
- ► However, in general, this assumption is not valid!
- We showed that

$$\partial_t u \in L \log L(0, T, \mathbb{H}^{-s}(\Omega))$$

and

$$\partial_{tt}u\in L^2(t^{\sigma},(0,T)),$$

for $\sigma > 3 - 2\gamma$. These are valid under realistic assumptions on f and u_0 .

Time discretization for $\gamma \in (0,1)$. Consistency

- ▶ Using these new regularity estimates we can provide an analysis of the L1 scheme.
- Since

$$\partial_t^{\gamma} u(x, t_{k+1}) = D^{\gamma} u(x)^{k+1} + r_{\gamma}^{\tau}$$

and the remainder satisfies

$$\|\mathsf{r}_{\gamma}^{\tau}\|_{\mathbb{H}^{-\mathsf{s}}(\Omega)} \lesssim \tau^{\theta} \left(\|\mathsf{u}_{0}\|_{\mathbb{H}^{2\mathsf{s}}(\Omega)} + \|f\|_{H^{2}(0,T;\mathbb{H}^{-\mathsf{s}}(\Omega))} \right),$$

where $\theta < \frac{1}{2}$.

▶ Key result: $u_t \in L \log L(0, T; \mathbb{H}^{-s}(\Omega))$. Hardy and Littlewood yields $I^{1-\gamma}: L \log L(0, T) \to L^{\frac{1}{\gamma}}(0, T)$ boundedly.

Error estimates for fully discrete schemes

Discretization in time and space: stability + consistency yield

▶ Error estimates for \mathcal{U} : $s \in (0,1)$ and $\gamma \in (0,1)$

$$[I^{1-\gamma} \| tr_{\Omega} (v^{\tau} - V_{\mathscr{T}_{y}}^{\tau}) \|_{L^{2}(\Omega)}(T)]^{\frac{1}{2}} \lesssim \tau^{\theta} + |\log N|^{2s} N^{\frac{-(1+s)}{n+1}}$$
$$\| v^{\tau} - V_{\mathscr{T}_{y}}^{\tau} \|_{\ell^{2}(\hat{H}_{l}^{1}(\mathcal{C}_{y}, y^{\alpha}))} \lesssim \tau^{\theta} + |\log N|^{s} N^{\frac{-1}{n+1}}.$$

▶ Error estimates for u: $s \in (0,1)$ and $\gamma \in (0,1)$

$$[I^{1-\gamma}\|u^{\tau} - U^{\tau}\|_{L^{2}(\Omega)}(T)]^{\frac{1}{2}} \lesssim \tau^{\theta} + |\log N|^{2s} N^{\frac{-(1+s)}{n+1}}$$
$$\|u^{\tau} - U^{\tau}\|_{\ell^{2}(\mathbb{H}^{s}(\Omega))} \lesssim \tau^{\theta} + |\log N|^{s} N^{\frac{-1}{n+1}},$$

where $\theta < \frac{1}{2}$.

RHN, EO, AJS. A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Analysis. 2014 (submitted).

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

Motivation

Formulation

Truncation

Error estimates

An optimal control problem

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

Motivation

Formulation

Truncation

Error estimates

An optimal control problem

- ▶ Consider a surface given by the graph of a function *u*.
- u solves $\Delta u = 0$ for fixed boundary data (elastic membrane).

► Let us now slide an obstacle from below. The surface must stay above it.

- Consider a surface given by the graph of a function u.
- u solves $\Delta u = 0$ for fixed boundary data (elastic membrane).

► Let us now slide an obstacle from below. The surface must stay above it.

- ▶ Consider a surface given by the graph of a function *u*.
- u solves $\Delta u = 0$ for fixed boundary data (elastic membrane).

► Let us now slide an obstacle from below. The surface must stay above it.

- ightharpoonup Consider a surface given by the graph of a function u.
- u solves $\Delta u = 0$ for fixed boundary data (elastic membrane).

- ► Let us now slide an obstacle from below. The surface must stay above it.
- ▶ For a given obstacle ψ , we obtain a function $u \ge \psi$, that will try to be as harmonic as possible.

- ▶ $\Delta u = 0$ when $u > \psi$, since there u is free to move.
- $ightharpoonup \Delta u \leq 0$ everwhere, since the surface pushes down.
- $\quad \quad \mathbf{u} \geq \psi.$
- ► Complementarity system:

$$\lambda = -\Delta u \ge 0$$
, $u - \psi \ge 0$, $\Delta u(u - \psi) = 0$ a.e. in Ω .

Motivation for the fractional obstacle problem

Consider

$$u = \sup_{\tau} E(\psi(X_{\tau}^{x})),$$

where X_{τ}^{x} is a purely jump process starting at x and τ denotes any stopping time.

► Then

$$u\geq \psi, \quad Lu\geq 0, \quad Lu=0 \text{ if } u>\psi,$$

where the operator L is

$$Lu(x) = P.V. \int (u(x) - u(x+u)) \mathcal{K}(y).$$

▶ Natural example: $\mathcal{K}(y) = |y|^{-(n+2s)}$ with $s \in (0,1)$ gives

$$(-\Delta)^s u = 0$$
 where $u > \psi$, $(-\Delta)^s u \ge 0$ everywhere, $u \ge \psi$

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

Motivation

Formulation

Truncation

Error estimates

An optimal control problem

The fractional obstacle problem

▶ Given $f \in \mathbb{H}^{-s}(\Omega)$ and an obstacle $\psi \in \mathbb{H}^{s}(\Omega) \cap C(\overline{\Omega})$ satisfying $\psi \leq 0$ on $\partial\Omega$:

$$u \in \mathcal{K}: \langle (-\Delta)^s u, u - w \rangle \leq \langle f, u - w \rangle \quad \forall w \in \mathcal{K}.$$

- $\blacktriangleright \ \mathcal{K} := \{ w \in \mathbb{H}^s(\Omega) : \ w \ge \psi \text{ a.e. in } \Omega \}.$
- ▶ Nonlinear and nonlocal problem since $(-\Delta)^s$!
- ▶ We use Caffarelli-Silvestre extension! In fact, the study of the regularites properties of the fractional obstacle problem motivated the Caffarelli-Silvestre extension.

Thin obstacle problem

► We convert the fractional obstacle problem in a thin obstacle problem.

► The restriction $U > \psi$ only applies when y = 0 (thin obstacle).

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

Motivation

Formulation

Truncation

Error estimates

An optimal control problem

Thin obstacle problem

Truncation of the cylinder:

$$\|\nabla(\mathcal{U}-\mathcal{V})\|_{L^2(y^\alpha,\mathcal{C}_{\mathcal{Y}})}\lesssim e^{-\sqrt{\lambda_1}\mathcal{Y}/8}\left(\|\psi\|_{\mathbb{H}^s(\Omega)}+\|f\|_{\mathbb{H}^{-s}(\Omega)}\right).$$

- To derive an error estimate the following regularity results are fundamental:
 - $u \in C^{1,\alpha}$ for $\alpha < s$ by Silvestre (2007).
 - ▶ Optimal regularity: $u \in C^{1,s}$ by Cafarelli, Salsa and Silvestre (2008).
 - $\triangleright \ \partial^{\alpha}_{\nu}\mathcal{U}(\cdot,0) \in C^{0,1-s}(\Omega).$
 - Optimal regularity by Allen, Lindgren, and Petrosyan (2014) $s \leq \frac{1}{2} \Rightarrow \mathcal{V} \in C^{0,2s}(\mathcal{C}_{\mathcal{Y}})$ and $s > \frac{1}{2} \Rightarrow \mathcal{V} \in C^{1,2s-1}(\mathcal{C}_{\mathcal{Y}})$.

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

Motivation

Formulation

Truncation

Error estimates

An optimal control problem

Thin obstacle problem

Nearly optimal error estimate:

$$\|\mathcal{U} - V_{\mathscr{T}_{\mathcal{T}}}\|_{\hat{H}^{1}_{I}(y^{\alpha}, \mathcal{C})} \leq C |\log N|^{s} N^{-1/(n+1)},$$

where C depends on the Hölder moduli of smoothness of \mathcal{U} and \mathcal{V} , $\|f\|_{\mathbb{H}^{-s}(\Omega)}$ and $\|\psi\|_{\mathbb{H}^{s}(\Omega)}$.

► Same techniques can be applied for the Signori or thin obstacle problem.

RHN, EO, AJS. Convergence rates for the obstacle problem: classical, thin and fractional, Phil. Trans. R. Soc. A (2015).

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

An optimal control problem

Formulation

Localization

Discretization

Motivation: Cardiac Microstructure

- ► The heart has its own internal electrical system that controls the rate and rhythm of heartbeat.
- Heartbeat produces an electrical signal that spreads from the top to the bottom: it causes the heart to contract and pump blood.
- Problems with this electrical system cause arrhythmia!
- Implantable cardioverter defibrillator (ICD): monitors the heart rhythm.
- ▶ If an irregular rhythm is detected, it will use low-energy electrical pulses to restore a normal rhythm.
- ► Fundamental modeling to understand the propagation of electrical excitation is:

Motivation: Cardiac Microstructure

- ► This conventional model neglects the highly complex, heterogeneous nature of the underlying tissues.
- ▶ Bueno-Orovio, Kay, Grau, Rodriguez, and Burrage (2014):

$$\partial_t u + (-\Delta)^s u = f.$$

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

An optimal control problem Formulation

Localization

Discretization

Problem Formulation

Define

$$J(u,z) = \frac{1}{2} \|u - u_d\|_{L^2(\Omega)}^2 + \frac{\lambda}{2} \|z\|_{L^2(\Omega)}^2.$$

We are interested in the optimal control problem:

$$\min J(u,z)$$

subject to the non-local state equation

$$\mathcal{L}^s u = z \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega,$$

and the control constraints

$$z\in Z_{\mathrm{ad}}:=\{w\in L^2(\Omega): \mathsf{a}(x')\leq \mathsf{w}(x')\leq \mathsf{b}(x')\quad \mathrm{a.e.}\ x'\in\Omega\}.$$

Here,

$$\mathcal{L}w = -\nabla \cdot_{\mathsf{x}'}(A\nabla_{\mathsf{x}'}w) + cw.$$

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

An optimal control problem

Formulation

Localization

Discretization

An equivalent control problem

The Caffarelli-Silvestre result allows us to rewrite our control problem as follows:

$$\min \ J(\textit{tr}_{\Omega}\mathcal{U}, \mathbf{z}) = \frac{1}{2} \|\textit{tr}_{\Omega}\mathcal{U} - \mathbf{u}_{\textit{d}}\|_{\textit{L}^{2}(\Omega)}^{2} + \frac{\lambda}{2} \|\mathbf{z}\|_{\textit{L}^{2}(\Omega)}^{2}$$

subject to the linear and local state equation

$$\frac{1}{d_s} \int_{\mathcal{C}} y^{\alpha} \nabla \mathcal{U} \cdot \nabla \phi = \langle \mathsf{z}, \mathit{tr}_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega), \mathbb{H}^s(\Omega)}, \quad \forall \phi \in \mathring{H}^1_L(y^{\alpha}, \mathcal{C}),$$

and the control constraints

$$z\in Z_{\mathrm{ad}}:=\{w\in L^2(\Omega): \mathsf{a}(x')\leq \mathsf{w}(x')\leq \mathsf{b}(x')\quad \mathrm{a.e.}\ x'\in\Omega\}.$$

Existence and uniquess of an optimal pair $(\bar{z},\bar{\mathcal{U}})$ follows standard arguments.

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

An optimal control problem

Formulation

Localization

Discretization

A truncated control problem

$$\label{eq:min_J} \text{min } J(\textit{tr}_{\Omega}\textit{v}, \textbf{r}) = \frac{1}{2} \|\textit{tr}_{\Omega}\textit{v} - \textbf{u}_{\textit{d}}\|_{\textit{L}^{2}(\Omega)}^{2} + \frac{\lambda}{2} \|\textbf{r}\|_{\textit{L}^{2}(\Omega)}^{2},$$

subject to the truncated state equation

$$\frac{1}{d_{s}}\int_{\mathcal{C}_{\mathcal{Y}}}y^{\alpha}\nabla v\cdot\nabla\phi=\langle \mathsf{r},\mathit{tr}_{\Omega}\phi\rangle_{\mathbb{H}^{-s}(\Omega)\times\mathbb{H}^{s}(\Omega)},\quad\forall\phi\in\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}),$$

and the control constraints $r \in \mathsf{Z}_{\mathrm{ad}}.$

First order necessary and sufficient optimality conditions:

$$\begin{cases} \bar{v} = \bar{v}(\bar{r}) \in \mathring{H}^1_L(y^\alpha, \mathcal{C}_{\mathcal{Y}}) \text{ solution of state equation,} \\ \bar{p} = \bar{p}(\bar{r}) \in \mathring{H}^1_L(y^\alpha, \mathcal{C}_{\mathcal{Y}}) \text{ solution of adjoint equation,} \\ \bar{r} \in \mathsf{Z}_{\mathrm{ad}}, \quad (tr_\Omega \bar{p} + \lambda \bar{r}, r - \bar{r})_{L^2(\Omega)} \geq 0 \quad \forall r \in \mathsf{Z}_{\mathrm{ad}}. \end{cases}$$

Exponential convergence: For every $\mathcal{Y} \geq 1$, we have

$$\|\overline{\mathbf{r}} - \overline{\mathbf{z}}\|_{L^2(\Omega)} \lesssim e^{-\sqrt{\lambda_1} \gamma/4} \left(\|\overline{\mathbf{r}}\|_{L^2(\Omega)} + \|\mathbf{u}_d\|_{L^2(\Omega)} \right),$$

A truncated control problem

$$\label{eq:final_sum} \min \ J(\textit{tr}_{\Omega} \textit{v}, \textit{r}) = \frac{1}{2} \| \textit{tr}_{\Omega} \textit{v} - \textit{u}_{\textit{d}} \|_{\textit{L}^{2}(\Omega)}^{2} + \frac{\lambda}{2} \| \textit{r} \|_{\textit{L}^{2}(\Omega)}^{2},$$

subject to the truncated state equation

$$\frac{1}{d_{s}}\int_{\mathcal{C}_{\mathcal{Y}}}y^{\alpha}\nabla v\cdot\nabla\phi=\langle \mathsf{r},\mathit{tr}_{\Omega}\phi\rangle_{\mathbb{H}^{-s}(\Omega)\times\mathbb{H}^{s}(\Omega)},\quad\forall\phi\in\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}_{\mathcal{Y}}),$$

and the control constraints $r \in Z_{\mathrm{ad}}$.

First order necessary and sufficient optimality conditions:

$$\begin{cases} \bar{v} = \bar{v}(\bar{r}) \in \mathring{H}^1_L(y^\alpha, \mathcal{C}_{\mathcal{Y}}) \text{ solution of state equation,} \\ \bar{p} = \bar{p}(\bar{r}) \in \mathring{H}^1_L(y^\alpha, \mathcal{C}_{\mathcal{Y}}) \text{ solution of adjoint equation,} \\ \bar{r} \in \mathsf{Z}_{\mathrm{ad}}, \quad (tr_\Omega \bar{p} + \lambda \bar{r}, r - \bar{r})_{L^2(\Omega)} \geq 0 \quad \forall r \in \mathsf{Z}_{\mathrm{ad}}. \end{cases}$$

Exponential convergence: For every $\mathcal{Y} \geq 1$, we have

$$\|\overline{\mathsf{r}} - \overline{\mathsf{z}}\|_{L^2(\Omega)} \lesssim e^{-\sqrt{\lambda_1}\gamma/4} \left(\|\overline{\mathsf{r}}\|_{L^2(\Omega)} + \|\mathsf{u}_d\|_{L^2(\Omega)} \right),$$

Error Estimates

- We propose a fully discrete scheme for the control problem based on the Cafarelli-Silvestre extension.
- ► The control is discretized with piecewise constants. The state is approximated as before.
- ► Error estimates for the control:

$$\|\bar{\mathsf{z}} - \bar{\mathsf{Z}}\|_{L^2(\Omega)} \lesssim |\log \mathsf{N}|^{2s} \mathsf{N}^{\frac{-1}{(n+1)}}.$$

Error estimates for the state:

$$\|\bar{\mathsf{u}}-\bar{U}\|_{H^s(\Omega)}\lesssim |\log N|^{2s}N^{\frac{-1}{(n+1)}}.$$

Uniform versus anisotropic refinement

#DOFs	$\ ar{z}-ar{Z}\ _{L^2(\Omega)}$	$\ ar{z}-ar{Z}\ _{L^2(\Omega)}$	$\ ar{u} - ar{U}\ _{H^s(\Omega)}$	$\ ar{u} - ar{U}\ _{H^s(\Omega)}$
3146	1.46088e-01	5.84167e-02	1.50840e-01	8.83235e-02
10496	1.24415e-01	4.25698e-02	1.51756e-01	6.49159e-02
25137	1.11969e-01	3.08367e-02	1.50680e-01	5.04449e-02
49348	1.04350e-01	2.54473e-02	1.49425e-01	4.07946e-02
85529	9.82338e-02	2.09237e-02	1.48262e-01	3.42406e-02
137376	9.41058e-02	1.81829e-02	1.47146e-01	2.93122e-02

Table: uniform - anisotropic - uniform - anisotropic.

Uniform versus anisotropic refinement

HA, EO: A FEM for an optimal control problem of fractional powers of elliptic operators, submmited to SIAM J. Control and Optim. (2014).

Motivation

The elliptic linear problem case

Space-time fractional parabolic problem

The fractional obstacle problem

An optimal control problem

Conclusions and future work

Conclusions

- Discretize nonlocal operators using local techniques.
- ► The analysis requires nonstandard ideas for FE:
 - Weighted spaces and weighted norm inequalities.
 - A posteriori error estimators on cylindrical stars.
 - Combination of Hölder and Sobolev regularity and growth conditions for obstacle problems.
 - **>**

but the implementation is "simple".

- Efficient solution techniques (multilevel and adaptivity).
- Provided an analysis of a commonly used but not properly analyzed scheme for Caputo time derivatives.
- ► These techniques have already found applications in control theory², image processing and others.

Future work

- ► Approximation classes for anisotropic adaptive methods.
- Multilevel methods for obstacle problems (with L. Chen UCI).
- Discretization of fractional powers of nondivergence form elliptic operators (with P.R. Stinga TU Austin).
- Applications.

References

- R.H. Nochetto, E. Otárola, A.J. Salgado. A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comp. Math, 2014. DOI:10.1107/s10208-014-9208-x.
- R.H. Nochetto, E. Otárola, A.J. Salgado. Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math., 2015. DOI:10.1007/s00211-015-0709-6
- R.H. Nochetto, E. Otárola, A.J. Salgado. A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal., 2014. (submitted).
- L. Chen, R.H. Nochetto, E. Otárola, A.J. Salgado. A PDE approach to fractional diffusion: a posteriori error analysis. J. Comput. Phys., 2015. DOI:10.1016/j.jcp.2015.01.001.
- H. Antil, E. Otárola. A FEM for an optimal control of fractional powers of elliptic operators. SIAM J. Control and Optimization, 2015. (submitted).
- H. Antil, E.H. Otárola, A.J. Salgado. A fractional space-time optimal control problem: analysis and discretization. SIAM J. Control and Optimization, 2015. (submitted).
- R.H. Nochetto, E.H. Otárola, A.J. Salgado. Convergence rates for the classical, thin and fractional elliptic obstacle problems. Phil. Trans. Royal Soc. Ser. A (accepted), 2014.
- E.H. Otárola, A.J. Salgado. Finite element approximation of the fractional parabolic obstacle problem. In preparation, 2015.

